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The Wall Theorem for Elastic Moduli 
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New expressions for the elastic moduli of a classical system are derived. They 
involve only the two-point correlation function and the derivative of the one- 
point correlation function, both only on the boundary of the system. These 
expressions, valid for any interaction derivable from a potential, are proved 
from a mechanical point of view by generalizing the virial theorem of Clausius, 
and from a statistical point of view by a direct method that constitutes an alter- 
native to Green's dilatation method. 
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1. I N T R O D U C T I O N  

Pressure is defined either as the mean  force exerted by the colliding par- 
ticles on a boundary  element of  a system, or as the derivative of the free 
energy with respect to a deformation;  it is then one of  the few physical 
quantities that  can be directly defined either f rom a mechanical  or a 
statistical point  of  view. The mechanical  approach  leads, via the virial 
theorem of Clausius (5) applied to a constrained system, (1~ to the wall 
theorem, P =  PwallkT. On the other  hand, in the statistical framework,  the 
virial expression for the pressure (s/ is obtained by the dilation method  of  
Green(7); this method  can be extended to the elastic modulus  tensor and 
therefore allows us to write "virial" expressions for, e.g., the inverse com- 
pressibility and the Lam6 coefficients (1'17'18) (we prefer to speak of "bulk" 
expressions, since the evaluat ion of  such quantities necessitates knowledge 
of  correlat ion functions up to the order  2n on the whole domain  occupied 
by the system interacting th rough  n-body forces). 
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In this paper we derive "wall" expressions for elastic moduli: they 
involve only the two-point correlation function and the derivative of the 
one-point correlation function, both only on the boundary of the system. 
Moreover, the forces do not appear in these expressions, which are valid 
for any domain and without assuming restrictions as two-body forces or 
Euclidean invariant potential. 

In Section 2 we introduce the general assumptions and derive these 
wall expressions from a mechanical point of view; we obtain the same 
expressions by statistical considerations in Section 3: the dilation method is 
there replaced by the direct expansion of the configurational characteristic 
function of the deformed system. Particular cases, such as two-body forces, 
spherical domains, and Coulomb and hard-sphere systems, are also dis- 
cussed. 

2. T H E  M E C H A N I C A L  W A L L  T H E O R E M  

2.1. Description of  the System 

Let ~;4~ p), the Hamiltonian of the N-particle system, be of the form 

2r p) = H(x, p) + hA(X) (2.1) 

where hA(X) is the wall potential keeping the system confined to the boun- 
ded region A ~Rv, and 

H(x, p )=  '̂~ P~P~+ V(x) (2.2) 
i:~1 2m 

where V(x) contains all the remaining interactions, assumed to be A 
independent: 

N N N 

V(x)= ~ v(xi)+ ~ v(xi, xfl+ ~ v(xi, xj, xk )+. . .  (2.3) 
i = l  i<]  i < j < k  

Defining FT:=-~V(x) /~x~ and f~:=-~hA(x)/OxT, we obtain the 
classical equations of motion 

5c~ = p~/m, [~ = F~ + f~ (2.4) 

The thermodynamic definitions of the (isothermal) stress tensor and of the 
elastic modulus tensor are, respectively, (~'~2) 

1 OF (2.5) 
~ := IAI c3-u--~ 2=0 

( O--ZF 6 OF OF 
B~6 := ]A] \eu,r ,=0 + e~ ~--~6 ,=o-6~~ 0--~ ,=o) (2.6) 
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Here F is the Helmholtz free energy and u~ is the displacement gradient 
tensor describing the deformation: 

x '~ = ( 6 ~  + u ~ )  x ~ = : D ~ x  ~ (2.7) 

The evaluation of (2.5) and (2.6) in the canonical ensemble leads to (1) 

1 
%~ = ~-7< T~p ) (2.8) 

1 

+ aS, < T~a > - a,a < T~ e >) (2.9) 

with 

~ N 

T ~  "= - P' p{  E FTx{ (2.10) 
m i = 1  i = 1  

N 1 N 0F~i  

�9 ~ ~ 6 e ~ p T P ~ ) - ~ x ~ g x ~  Ox~ (2.11) W~Ta = ~1 m ((~aP~P~ + 6~aPe p~ + 
i =  i , j  

In (2.8) and (2.9), the brackets indicate the canonical average, with 

exp[ - f lH(x ,  p)] ZA(x) (2.12) 

as the (unnormalized) probability density, where 

N 

zAx)  = 1-] zAxi)  
i = l  

ZA(Xi) = Xi r A 

Now, in order to obtain a mechanical formulation for r ~  and B ~ a ,  the 
ensemble average is replaced by the time average along a phase space tra- 
jectory. The explicit form of ha(x) can be determined by considering ha(x) 
as an external potential: then (2.12) must be equivalent to 
exp[-fl~4~ p)], which leads to 

N 

ha(x) = - k T  ~ In ZA(xi) (2.14) 
i = 1  

Instead of (2.14), the most obvious choice would be to impose elastic 
collisions with the wall. But it is easy to see that h A would then be propor- 
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tional to the square of the velocity [which gives some insight about the 
origin of the factor kT appearing in (2.14)]; on the other hand, the 
statistical ensemble corresponding to this situation is the microcanonical 
one, and nothing ensures that (2.9) remains true in that ensemble (see, e.g., 
Refs. 1 and 17, where new terms appear when the canonical description is 
replaced by the grand canonical one). 

Equation (2.14) is formal in the sense that it contains the logarithm of 
a distribution; however, all derivations can be made rigorous if )~A(X~) is 
considered as the limit of a continuous function (see, e.g., Ref. 10). In what 
follows, we shall take 

f~ = kT C)ZA(X~) (2.15) 
?X7 

as the force exerted by the wall on the particle i. 

2.2. Der ivat ion of the Wal l  Expressions 

f~ is a distribution whose support is the wall ~A. On the other hand, 
straighforward evaluation of (2.8) and (2.9) requires the knowledge of F~ 
on the whole domain. The program consists now in replacing F~ by f~, i.e., 
in transforming bulk expressions into wall expressions. The famous virial 
theorem of Clausius (5) fulfills exactly this task; let us repeat the argument: 
we define 

N 

N ~ : =  ~ p~[x~ (2.16) 
i = 1  

N 

C~'=  ~ f~x~ (2.17) 
i = l  

Relations (2.4) and (2.10) lead to 

fi/~ = --T~a + C~ (2.18) 

Since N~  is a bounded observable, the time average of its derivative is 
zero; consequently, 

(T~,,~)t= (C~,~), (2.19) 

where the brackets now represent time averages. On the other hand, we get 
from (2.15) 
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(C=e) =k  T al.a(x~) x~ 
, 1 Ox~ 

= k T  f dx ~)~a(x) xenl(x ) 
Ox = 

= - kTfaA da~ x~n~(x) (2.20) 

Here nl(x) := (~_~N~I ~(X- Xi))t is the one-point correlation function and 
da~ represents the ~ component of the outward-oriented surface element of 
c3A. An integration by parts and Stokes' theorem lead to the last expression 
of (2.20), which is the wall formulation for the stress tensor. When n~(x) is 
constant on OA, we get 

,=a(A) = -6~aP(A) (2.21) 

P(A ) = kTn, (OA) (2.22) 

Equation (2.22) is the well-known wall theorem for the pressure, and con- 
stitutes the straightforward generalization to nonideal systems of the 
kinetic equation of state for the ideal gas. Equation (2.22) was derived by 
Lebowitz, (1~ using the virial theorem, by Fisher, (6~ who compared the 
virial expansion of the pressure and of the wall density, and by Siegert and 
Meeron, (17) in the particular case of a spherical domain with arguments 
similar to those of Section 3. 

It remains to transform the bulk expression (2.9) of B~a(A) into a 
wall expression. This is done by the two identities 

( W~a ), = fl ( T~r T,a ), - fl ( T~ C~a ), - b~ ( C~a ), (2.23) 

( L ~ C , a ) ,  = (C~,~C,a)t+~5~akT(C,,~),+kT x x. r (2.24) 
, axe~ 

To get (2.23), we start from 

0 =  ~(T~eN~a ) = (J '~pN~,a) , - (L,~T,a) ,+(L#C~a)t  (2.25) 

Replacing the relevant observables by their explicit expressions (2.10), 
(2.11), (2.16), and (2.17) and using (2.19), we get (2.23) under the 
hypothesis that kinetic and configurational degrees of freedom are 
uncorrelated, in the sense that 

(A(x) p~ p~)t  = 3~,~kT(A(x))t (2.26) 

822/45/1-2-i2 
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In the same way 

o=Id  (N~C'6))t=-(T~C~6)t+~C~C~)t+(N~C~6)t (2.27) 

leads to (2.24). Equations (2.9), (2.23), and (2.24) allow us to write 

1 N 

6~a(C~) - &~a( C ~ ) ]  (2.28) 

Equation (2.28) constitutes the wall formulation for the elastic modulus 
tensor. Proceeding as in (2.20), we get its expression in terms of correlation 
functions: 

B~.ya(A)=~A] I--faA da~x faA d~yn~(x, y) x~x~ 

anl(x) 
- faA d~ x~x ~ ~x ~ 

+ 6~6 faA dCX~xX3n~(x)--367 faA da~ x6nl(x)] (2.29) 

Here 

nf(x, y) := n2(x, y)--nl(x) nl(y) (2.30) 

n2(x, y)"= gJ(x- xi) 6(y-- xj) (2.31) 
\ i ~ j  

Equation (2.29) contains many interesting features: its evaluation 
necessitates only the two-point correlation function and the derivative of 
the one-point correlation function, both only on the boundary OA of the 
domain. Moreover, the potential V(x) does not appear in this expression, 
which is valid without assuming restrictions such as two-body forces or 
Euclidean invariance. This wall theorem for elastic moduli can greatly sim- 
plify numerical work in a computer simulation: the traditional bulk version 
given by (2.9) (see, e.g., Refs. 1, 17, and 18) requires knowledge of the 
correlation functions up to order 2n on the whole domain A for a system 
interacting with n-body forces. 
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3. THE STATIST ICAL W A L L  T H E O R E M  

In this section, we derive the wall expressions for r ~  and B~6  by 
purely statistical arguments. The only difference between these two 
procedures lies in the fact that in formulas (2.20) and (2.29) time-averaged 
correlation functions must be replaced by ensemble-averaged ones. 

The canonical partition function is 

1 d Q(N, A, f l )=N! h ~ f  p dx ZA(X) exp[-- fill(x, p)] (3.1) 

A well-known trick (~'7) consists in absorbing in H(x, p) the deformation 
A --* A' by the change of variables x' = Dx and p' = D ltrp of Jacobian 1, 
where D is defined in (2.7). This procedure leads to bulk expressions for z~p 
and B~av6. 

The alternative we shall develop here is to work directly with ZA'(X): 
when its derivatives appear under an integral, integration by parts allows 
us to apply Stokes' theorem, leaving a boundary contribution only. We use 

XA,(x,) = ZDA(Xi) = ZA(D-lxi) (3.2) 

and 

(3.3) 

Equations (3.2) and (3.3) imply 

~)~A'(Xi) u = O  a)~A(Xi) Ou~ = ax~ x~ 

au~ ouv~ ,,= o ax~ ax~ ax~ 

(3.4) 

%~, ezA(__yx,) xf (3.5) 

The derivatives of the free energy 

F(N, A', T)= - k T l n  Q(N, A', T) (3.6) 

with respect to the displacement gradients are now computed by the 
method described above. %~ and B~Bv~ are obtained by (2.5) and (2.6); the 
final results are, as claimed before, 

"c~fl(A) -- k.~ fc~A do: xfltU/l (x) (3,7) 
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kT 

fa Onl(x) 
- d ~  xex ~ a gx r 

+~5~a faa &r~xxflnl(x)--c~ foA d~7~ xanl(x) ] (3.8) 

ensemble where the correlation functions are now to be considered as 
averages. 

It is easy to obtain bulk expressions for %~ and B~B~a from (3.7) and 
(3.8) by using the BBGKY hierarchy: taking, e.g., the stress tensor in the 
case of two-body forces, we get 

(3.9) 

kT "c~fl(A)= ---~ L dx[ (~flnl(x)-{-Xfl~Illl(x)lox ~ J 

We recognize in (3.9) the well-known virial expression for the pressure. The 
bulk expression for B~a(A) is obtained in a similar way. 

Remarks 

1. When V(x) contains two-body translation-invariant interactions 
only, we get 

faa nf(x, y) = --Onl(x)/3x ~ (3.10) da~ 

[(3.10) is proved by applying the BBGKY hierarchy to both sides). 
The elastic modulus tensor can then be written in the more compact form 

kT 

- a=a%e(A) + 6e,%a(A ) (3.11) 

2, In a recent paper, Powles et aL O4) considered A as the ball B(0, R) 
of radius R centered at the origin; by evaluating 

kT fa dcr~ xZnl(x), 
[B(O, r)] B(O,r) r<.R 
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either directly, or by using the BBGKY hierarchy, they obtained the iden- 
tity 

v IB(0, r)] -i=1 xrfrO(r-[xi[) (3.12) 

where p(r) is the local density at distance r and p(r) is the mean density 
inside B(0, r). Equation (3.12) is then interpreted as defining P(r), the local 
pressure at distance r. 

3. For hard sphere systems, the wall theorem was obtained by Left 
and Coopersmith (11) by direct computation of the correlation function 
na(x) in the one-dimensional case, and by Reiss et al., (15) who considered 
the work of formation of a cavity in the system. For such systems the con- 
tact theorem holds, (8~ 

P= pkT + k T a  v 1c3s n2(O, a) (3.13) 
,AV 

where [ag2v] is the surface of the v-dimensional unit ball, a is the diameter 
of the hard spheres, and n2(0, a) is the contact value of the distribution 
function. Equation (3.13) follows in straightforward way from the ther- 
modynamic limit of (3.9), and is therefore to be considered as a bulk 
expression. However, there is an analogy between the contact and the wall 
theorems in the sense that they are both direct consequences of the same 
singularity in the particle-particle and particle-wall interactions, respec- 
tively. 

4. Systems with periodic boundary conditions possess no boundary, 
and the potential V(x) is, by construction, A-dependent; therefore the virial 
theorem cannot be applied (see, e.g., Ref. 2, p. 9, for a definition of the 
pressure in such systems). 

5. The one-component plasma is constituted by charged particles 
interacting by Coulomb forces inside a neutralizing homogeneous bath. 
There are three possible deformations of such a system (and consequently, 
three different pressures and elastic moduli): 

(i) The bath is left underformed. 

(ii) The bath is deformed, keeping its total charge fixed. 

(iii) The bath is deformed, keeping its density fixed. 

The three choices correspond, respectively, to the so-called virial, thermal, 
and mechanical pressures, as discussed in Refs. 4 and 13. The V(x) as given 
by (2.2) is of course A-independent in the case (i) only, and therefore the 
density of the particles at the wall determines the "virial" pressure. Bonomi 
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et al. (3) studied by computer simulation the density profile near the wall for 
a one-dimensional, one-component plasma. Jancovici (9) calculated exactly 
in two dimensions the density near the wall and its dependence on a 
possible total charge excess, for kT= e2/2. 

6. When the domain A is B(0, R), the v-dimensional ball of radius R 
centered at the origin, it is easy to check from symmetry considerations 
that the elastic modulus tensor, as given by (3.8), can be written as 

(3.14) 

Here the Lam6 coefficients 2 and / ,  are, respectively, the bulk and the shear 
modulus. They are related to the isothermal compressibility )iT 

ZT ~ := --]A[ ~3P(A)/~(A) (3.15) 

by 

• T  1 ~- ,~ -{- (2/v) # (3.16) 

where v is the dimension of the system. The form (3.14) implies that the 
system is isotropic. However, it must be realized that such an isotropy does 
not exclude solid phases; it means simply that the possible anisotropic pure 
phases have been averaged in all directions, leading to an effective isotropic 
elastic modulus tensor. (Recall that a pure phase is an equilibrium state 
which cannot be written as a convex combination of different equilibrium 
states; see, e.g., Ref. 16). In the following, we shall assume for simplicity 
that the potential is a two-body one. We shall now give the expressions for 
g71 and # in the cases v = 1, 2, 3; we get from (3.11): 

For v = 3 

Xr = "5 kTrcR3 d7 sin 7(cos 7 - 1) n5(cos 7) (3.17) 

1 f/ #=-~kTrcR 3 dgs inT ( -3cos27+2eosT+l )n f ( cosT )  (3.18) 

For v = 2  

1 2 2= 
Z~ 1 =-~kTR fo dT(cos 7 -  1) n~(cos 7) (3.19) 

1 r2rc 
#=-~kTR2Jo d 7 ( - 2  cos2 7 + cos 7 + 1) n[(cos 7) (3.20) 
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F o r  v = 1 

Z r  1 = - k T L n r 2 ( L / 2 ,  - L / 2 )  (3.21) 

In (3.17)-(3.20),  have wri t ten  n f ( x ,  y ) - n ~ ( e o s  7), where y is the angle  
between x and  y. In  (3.21), whose phys ica l  i n t e rp re t a t ion  is obvious ,  we 

put  A = [ - L / Z ,  L /Z] .  

F o r m u l a s  (3.17) and  (3.19), which give the inverse compress ibi l i ty ,  are  
in full ag reement  with fo rmula  (8.11) of Ref. 17 when (3.10) is used. 

F o r  the ideal  gas, where  n~(x ,  y ) =  - p / I A  [, the above  formulas  lead  to 

�9 ~ = Z T  1 = p k T ,  /~=0 (3.22) 

Equa t ions  (3.18) and  (3.20) cons t i tu te  sum rules for fluids in the sense that  
/~ = 0 implies  tha t  n r ( cos  7) mus t  be o r t h o g o n a l  to the re levant  weight  fac- 

tor. 
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